Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression.
نویسندگان
چکیده
Akt is a robust oncogene that plays key roles in the development and progression of many cancers, including glioma. We evaluated the differential propensities of the Akt isoforms toward progression in the well-characterized RCAS/Ntv-a mouse model of PDGFB-driven low grade glioma. A constitutively active myristoylated form of Akt1 did not induce high-grade glioma (HGG). In stark contrast, Akt2 and Akt3 showed strong progression potential with 78% and 97% of tumors diagnosed as HGG, respectively. We further revealed that significant variations in polarity and hydropathy values among the Akt isoforms in both the pleckstrin homology domain (P domain) and regulatory domain (R domain) were critical in mediating glioma progression. Gene expression profiles from representative Akt-derived tumors indicated dominant and distinct roles for Akt3, consisting primarily of DNA repair pathways. TCGA data from human GBM closely reflected the DNA repair function, as Akt3 was significantly correlated with a 76-gene signature DNA repair panel. Consistently, compared with Akt1 and Akt2 overexpression models, Akt3-expressing human GBM cells had enhanced activation of DNA repair proteins, leading to increased DNA repair and subsequent resistance to radiation and temozolomide. Given the wide range of Akt3-amplified cancers, Akt3 may represent a key resistance factor.
منابع مشابه
Genomically Incorporated 5-Fluorouracil that Escapes UNG-Initiated Base Excision Repair Blocks DNA Replication and Activates Homologous Recombination.
5-Fluorouracil (5-FU) and its metabolite 5-fluorodeoxyuridine (FdUrd, floxuridine) are chemotherapy agents that are converted to 5-fluorodeoxyuridine monophosphate (FdUMP) and 5-fluorodeoxyuridine triphosphate (FdUTP). FdUMP inhibits thymidylate synthase and causes the accumulation of uracil in the genome, whereas FdUTP is incorporated by DNA polymerases as 5-FU in the genome; however, it remai...
متن کاملGlioma-amplified sequence KUB3 influences double-strand break repair after ionizing radiation
Human glioblastomas are characterized by frequent DNA amplifications most often at chromosome regions 7p11.2 and 12q13-15. Although amplification is a well-known hallmark of glioblastoma genetics the function of most amplified genes in glioblastoma biology is not understood. Previously, we cloned Ku70-binding protein 3 (KUB3) from the amplified domain at 12q13-15. Here, we report that glioblast...
متن کاملDeregulated Akt3 activity promotes development of malignant melanoma.
Malignant melanoma is the skin cancer with the most significant impact on man, carrying the highest risk of death from metastasis. Both incidence and mortality rates continue to rise each year, with no effective long-term treatment on the horizon. In part, this reflects lack of identification of critical genes involved and specific therapies targeted to correct these defects. We report that sel...
متن کاملAkt3 and Mutant B-Raf Cooperate to Promote Early Melanoma Development
B-Raf is the most mutated gene in melanoma; however, the mechanism through which it promotes early melanomas remains uncertain. Most nevi contain activated B-Raf but few develop into melanoma, and expression in melanocytes is inhibitory with low protein levels present in surviving cells, suggesting unknown cooperative oncogenic events are necessary for melanoma development. Because many melanom...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 11 شماره
صفحات -
تاریخ انتشار 2015